Looking to Upgrade Your Cameras from an iPhone to Stream?

A lower resolution three-chip camera can actually render more accurate images to that of a higher resolution single-chip camera when you compare on a pixel-by-pixel resolution.

Looking to Upgrade Your Cameras from an iPhone to Stream?
As shown in the first of three images with this article, is the representation of color filters for a single-chip camera. Each glass represents a pixel and the gel is the color filter that makes each pixel only respond to the particular bandwidth of light.
Credit: Courtesy of YouTube
Looking to Upgrade Your Cameras from an iPhone to Stream?
As shown in the first of three images with this article, is the representation of color filters for a single-chip camera. Each glass represents a pixel and the gel is the color filter that makes each pixel only respond to the particular bandwidth of light.
Credit: Courtesy of YouTube

Photos & Slideshow

Looking to Upgrade Your Cameras from an iPhone to Stream?

Cameras News

Looking to Upgrade Your Cameras from an iPhone to Stream?
A Guide into PTZ Cameras, 5 Brands Worth A Closer Look (Part 3)
A Guide into PTZ Cameras, Controllers for Churches (Part 2)
A Guide into PTZ Cameras and How They Can Work for Churches

Cameras Resource

A Guide into PTZ Cameras, 5 Brands Worth A Closer Look (Part 3)
The next time you see a camera during a service, don't think of it as a distraction. See them as missionaries, carrying the gospel to the entire world.
·

Let’s face it – camera technology has come a long way over the last two decades. Does anyone remember the first-generation digital cameras from the 1990s that used floppy disks?

The first thing is get the lighting right, as no camera will make up for poor quality lighting.

The portable camera has for the most part been replaced with the latest generation of smartphone. The current image sensors are able to record HD—and even 4K resolution—with pretty surprising results.

In order to really dig into the what, how and why of camera technology and what makes one better than another, I need to dig into a bit of the technical details. That way you can understand what sets a $5,000 broadcast camera (or one even more expensive) apart from a $500 smartphone or DSLR camera.

For those of you who have followed me on laser projector discussions – you know that I talk about the single chip DLP projector versus the three-chip projectors, and how they offer much better color brightness and accuracy. The reason is that the one-chip projector only shows one color at a time. To display the full range of color, it flashes a red image, then green, and blue sequentially. This happens so fast that most of the human population renders that as a full-color image. The three-chip projectors are showing all three colors continually, so you always see a full-color image.  

The simple answer here on the camera side is also true to an extent. There are single chip cameras and three-chip cameras.

The primary way an imaging sensor works is by light hitting it and the photons energizing the photo diode. Unfortunately, I don’t have the bandwidth in this article to get into what the P-N junction is (in short, it is a boundary or interface between different types of semiconductor materials), and how the phosphors or boron doping affect that, so let’s rather look to how these things work.

The Basics Behind Image Sensors

All image sensors are “dumb” to color – they generally sense light from about 190 to 1,100 nanometers. In the middle of that range is visible light which for most is around 380-700nm. For those of you who geek out about what frequency that is – it is 430-770THz. For those of you unfamiliar with tetrahertz, know that kilohertz represents 103  Hz, megahertz equates to 106 Hz, while gigahertz amounts to 109 Hz, and lastly, terahertz stands at 1012 Hz.

With both single and three-chip cameras, a color filter sends a certain bandwith of visible light for each pixel. There is a pattern of what colors are in what order, which is called the Bayer Filter.


More About Stefan Svard
Stefan Svard has been involved with the A/V world for virtually all of his life. His first experience dates back to when he was 13 years old, and fast forward to the present. He now has the opportunity to serve a much larger base of people through his company, Audio Video Electronics, a Minneapolis-based AVL systems integrator, which specializes in sound systems, acoustic design, sound transmission isolation, video systems and lighting systems.
Get in Touch: ssvard@audiovideoelectronics.com    More by Stefan Svard

Latest Resource

Worship Facilities Magazine, January-February 2018
The January-February 2018 issue of Worship Facilities Magazine offers articles about the many steps a church had to take in the aftermath of a fire, and another involving a church making the jump to 4K.


Article Topics

Products · Technology · Video · Cameras · Team Management · Budgeting · Accuracy · Bayer Filter · Broadcast · Cameras · Church · Digital · All Topics

Support and Enhance the Worship Message

The latest strategies for sound, lighting and facilities can help you better attract and engage with your congregation. With Worship Facilities’ insights on leadership, communication and administrative tools, each issue shows you how to design and maintain your facility and how to adapt it to meet the changing needs of today’s members.
Explore the success stories of others, and find ways to enhance your weekly services. Get a free subscription to Worship Facilities magazine. Subscribe today!

Comments


Editor's Picks
©2018 WFX Network · A division of Informa · 1166 Avenue of the Americas, 10th Floor, New York, NY 10036 · All Rights Reserved.